NASA-CR-191403

sard GenT

/55 5 7/23

Y2 Y

/36/7%
e 4

Lessons Learned in the Implementation Phase of a
Large Ada™ Project

Carolyn E. Brophyl, Sara Godfrcyz,
William W. Agrestil, aad Victor R. Basili!

1 Department of Computer Science 2
Uaiversity of Marylaod
College Park, MD. 20742

N

Absatract

We need to understand the effects that introducing
Ada has oo the software development environment.
This paper is about the lessons learned from an ongoing
Ada project in the Flight Dynamies division of the
NASA Goddard Space Flight Center. It is part of a
series of lessons learned documents being written for
each development phase.

FORTRAN is the usual development language is
tbis environment. This project is one of the first to use

Ada in this environment. The experiment consists of ~

the development of two spacecraft dynamics simulators.
One is done in FORTRAN with the usual development
techniques, and the other is done with Ada. The Ada
simulator is 135,000 lines of code (LOC), 2nd the FOR-
TRAN simulator is 45,000 LOC.

We want to record the problems apd successes
which occurred during implementation. Topics which
will be dealt with include (1) use of nesting vs. library
units, (2) code reading, (3) unit testing, and (4) lessons
learned using special Ada features.

It is important to remember that these results are
derived from one specific environment; we must be very
careful when extrapolating to other environmests.
However, we belicve this is a good beginning to a better
understanding of Ada use in production cuvironments.

Ada is & trademark of the US. Department of Defease - Ada Joiat
Program Office.

Coatact: Carolyn Brophy, Department. of Computer Scicace,
Ugivervity of Marylaad, College Park, MD 20742, (301) <S4
6154,

Support for this research provided by NASA grant NSG-5123 to the
Uaiversity of Maryland.

5207

Goddard Space Flight Ceater 3
Code 552.1
Greenbelt, MD. 20771

-24

Computer Sciences Corporation
System Sciences Division

8728 Colesville Road

Silver Spring, MD. 20010

Ada incorporates many software development con-
cepts; it is much more than “just another language™.
As such, we need to understand the effects of introduc-
ing Ada into the software development envircumest.
This paper concentrates oan the lessons learned from so
ongoing Ads project in the Flight Dynamics Divisioa of
the NASA Goddard Space Flight Center (GSFC). The
Ada project is spoosored by the GSFC Software
Engincering Laboratory (SEL). It is part of & series of
lessons learned documents being written for each
development phase.

Eovironment

FORTRAN is the usual development language in
this environment. The flight dynamies applications
involve mission analysis and spacecraft orbit and atti-
tude determination and control. Manpy of the software
development projects are similar from mwission to mis-
sion providing, for example, an sttitude ground support
system or an sttitude dynamics simulator. This pattern
of developing similar applications is important for
domain expertise and for the legacy developed in this
environment for code, designs, expectations and intui-
tions. The similarity between projects allows s bigh
level of reuse of both design and code. Since the
problems wre basically familiar ones, the development
methodologies which involve much iteration do not seem
to be mecessary. The waterfall development model is
basically used here, and seems to work well in this case.
Lessops learped from the initial uses of Ada do oot
include changing this basic methodology.

Project

The project was origioally designed as s parallel
study with two teams. Each would develop & spacecraft
dyoamics simulator, one with FORTRAN as the imple-
mentation language, and one with Ada as the implemen-
tation language. The specifications for each simulator
were the same, supporting the upcoming Gamma Ray
Obscrvatory (GRO) mission. However, there sre many

PRECEDING PASE B!

d/€;

N93I-T0965

LESSUNS LEARNED

(MASA-CR=-1914N3)

 ANK NOT FILMED

IN THE IMPLEMENTATION PHASE OF A

(TRADFMARK) PROJECT

‘ Ada
" (Maryland Univ.)

LARGE

Unclas

P

5

—m o Mmoo

™

[oo—

other differences between the projects which keep the
study from being truly parallel™. The FORTRAN ver-
sion was the production version, thus they had schedul-
ing pressures the Ada team did not have. Without
scheduling pressures, the Ada team made enbancements
in their version not required by the specifications, wbich
increased lime spent oo the project. This wes also the
first time soy of these team members had doge an Ads
project, while the FORTRAN team was quite experi-
epced with the use of FORTRAN. The Ada team
required training io the language and developmeat
methodologies associated with Ada, while the FOR-
TRAN team did things in the usual way [McGarry,
Page ct al. 83]. The Ada team also experimented with
various design methodologies; this was pecessary W find
which ones would work better for this development
environment. The FORTRAN team was working with
a mature and stable environment. In switching to Ada,
the legacy of reuse for design, code, intuitions and
experience are gooe, and will be rebuilt slowly ia the
new language.

The philosophies of development were quite
differcot between the two projects. The Ada team con-
sistently applied the ideas of data abstraction and iafor-
roation hiding o their design development. The FOR-
TRAN development used structural decomposition
methods.

Qur goals with this project include:

(1) How is the use of Ada characterized in this
environment?

(2) How should the existing development process be
modified to best changeover from FORTRAN
Ada?

(3) What problems have been encountered in
development?! What ways bave we found to deal
with them?

Current Project Status

Both the FORTRAN and Ada teams started in
Jagouary, 1985. The Ada team began with training in
Ada, while the FORTRAN team immediately began
requirements unsalysis. The FORTRAN team delivered
its product (45K) after completing acceptance testing in
June, 1987. The Ada team is scheduled to finish system
testing its 135K product in February, 1088. Discussions
of the product size differences and eflort distributions
are presented in [McGarry, Agresti 88].

The lessons learned from major phases in the Adas
development arc being recorded in a series of SEL
reports: Ada training [Murphy, Stark 85], design {God-
frey, Brophy 87|, sad implementation (ia preparation).
This paper presents some of the main results {rom the
implementation (code and unit test) lessons fearned.

5207

Lessons Learned
1. Nesting vs. Library Units

1.1 The flat siructure produced by ustng library units has
advantages over a heauily nested structure

Nesting has many effects on the resulting product.
The primary advantage of nesting 1s that it enforces the
principle of information hiding structuraily, because of
the Ada visibility rules. Whereas with library units, the
only way w svoid violations of informatios hiding is
through self-discipline. Ia addition, the dot notation
tells the package where a module is located.

There are quite a few disadvantages W nesting,
however. Nesting makes reuse more difficult. A second
dynamies simulator in Ada is vow being developed
which can reuse up to 40% of the Ada project’s code.
But in order o reuse it, the nested code has w be
unnested, since the new application only needs some of
the pested units. This is often a labor intensive opera-
tion. Nesting also increases the amount of recompila-
tion required when changes are made, since Ada
assumes dependencies between even sibling pested
objects/procedures, even when the dependency is not
really there. This requires more parts of the system o
be recompiled than is necessary when more library units
are used. It is also harder to trace problems back
through nested fevels than it is through levels of library
units. There is Do ¢85y way to tell where & uoit of code
was called from, when it is pested. But library units
have the "with™ clauses to identify the source of a piece
of code. For this reason it is now believed that over use
of nesting at the expense of usiog more library units
makes maintepance barder. This is contrary to the
team's earlier expectations. The team had used nestiog
success{ully before oo 2 5000 lines of code traipiag pro-
ject. However, this kiad of approach does pot scale-up
well when developing large projects.

Library units seem o have a lot of advantages.
Besides fewer recompilations when changes are made,
and ‘easier unit testiog, every library unit cao easily be
made visible: 1o any other library unit merely by use of
the "with™ clause. In nested uaits this visibility does oot
exist, and a debugger becomes esseptial Lo see what is
bappening at the decper levels that are got within the
scope of the test driver. Library units allow smaller
components, smaller files, smaller compilation units, and
less duplication of code. The system is more maintaio-
able, since it is casier o find the unit desired. Reuse
with library units is also easier, since the parts of the
system are smaller. Configuration cootro! is also easicr
with library unils since more pieces are separate (e
the ratio of changes Lo code segments modified is closer
to 1). The major disadvantage seems Lo be that a com-
plicated fibrary structure develops, which ¢an lead w
errors by the developers. However, if the Ada project
were W be done over now, the team would use more
library units. and nest less.

Advantages and Disadvantages of
Nesting vs. Library Units

NESTING

Advantages

* informstion hiding

* visibility control

* type declarstions in
oue place

Disadvantages -

* enlarged code
more recompilations
harder to trace problems
through pested
levels
¢ can't easily tell where n
unit of code called
from
type declarstions in one
place means problems
for reuse
¢ harder meintenance
¢ debugger required
* larger unit sizes
iabibit code reading
¢ harder Lo reuse part of
the system

LIBRARY UNITS

Advantages

* fewer recompilations

® casier unit testing

* smaller components

* smaller files

* smaller compilation units

* less code duplication

® casier maintenance

< "with® clauses show source
of other code units used

¢ casier reuse

© cssier configuration control

1.2 The balance between nesting and library units s an
itmportant «mplementation issue, not a design issue.

The issue of whether to use library units or pested
units first arises in the design phase. At least this is the
case if it is assumed that the design documents reflect
this aspect of implementation (i.c., the design docu-
meats indicate in some way when pesting is intended vs.
when library wunits should be wused). While it s
appropriate {or the design to show depeodencies, these
should pot dictate implementation, as {ar as the library
unit/aesting question is concerned. The team con-
sidered the decisions concerning nestingflibrary units to
be a0 implemeantation issue.

5207

Disadvantages

* po information hiding
¢ complex library structure

.~

The library upits in the Ada project went dows
sbout 3 to 4 levels, while nesting went down many lev-
cls below that. Apother view of the system shows the
Adas project had 124 packages and S$ library units.
Duriog implementation most team members felt an
sppropriate balance had beep resched between nesting
levels and oumber of library upits. However, in retros-
pect, several felt thie nesting bad been overdone.

= ™

('""1

T e N

— r—

-

\

1.3 It appcars best to usc lLbrary units af {cast doumn (o
the subsystem level, and nesting af lower levels where
there < minimal (nteraction among a small number of
modules

Experiences with uait testing seem Lo indicate that
library units should at least go down o the subsystem
level. This makes testing casier. Below this level the
benefits of pesting sometimes become o important W
ignore. This is one beuristic which could be used o
help determine when the transition from libeary units w
nested units sbould occur.

An additional way o determine wheo the transi-
tion should occur is to examine the degree of interaction
between picces. For modules which interact beavily,
library units are preferred. At the point where the
interaction drops off, using nested units is preferable.
Sections with nested code arc casier to deal with when
they are small.

1.4 In mapping design (o code, caution should be used in
applying too rigorous a sct of rules for vistbility control.

In so attempt to control visibility, two features
appear to have been too rigorously applied. The first
feature is nesting. The design of the Ada project
seemed to suggest a particular pesting implementation.
But this created many objects within objects yielding a
bigh degree of nesting. The second way to control visi-
bility is through the use of many “call-through™s (a pro-
cedure whose only fuanction is 1o call another routine).
“Call-through's were used to group sppropriate pieces
together exactly as represented in the design. They can
be implemented via nesting or library upits. Faithful-
ness to the design structure was maintained this way.

The design had noo-primitive objects with specific
operations. These objects were implemented as pack-
sges. To put the specific operations {(subprograms) into
the objects (packages) the team used *“call-through™s.
Thus a physical piece of code was created for every
object in the design. “Call-through™s are one of the
reasons for the expanded code in the Ada project when
compared to the FORTRAN version. It is estimated
that out of the 135K LOC making up the Ada system,

- 22K LOC (specifications 3ad bodies) are because of

“call-through™s. While *“call-through™s provide a good
way to collect things into subsystems, these should be
limited 1o only two or three levels io the future.

U the implementation were Lo be done over now,
maoy of the existiog “call-through™s would be elim-
inated. Instead of creating actual code Lo correspond
with every object in the design, some objects in the
design would remain “logical objects’. No actual pack-
ages would exist; instead, s logical object would be
made up of a collection of lower level objects.

2. Code Reading

Code reading is gencrally done with wnit Lesting.
The developer doing the code reading is not the one

5207

who developed the code. Comments are returned o the
original developer. After code reading and unit testing,
the unit is put under configuration control.

2.1 Code reading helps in training people to use Ada.

Besides helping o find errors, code reading has.the
benefit of increasing the proficiency of team members in
Ada. ladividuals can see new ways o handle the algo
rithms being encoded. Code reading also allows gnother
person besides the original developer to understand =
given part of the project. This insight should help
understanding and lead to better solutions of problems
in the future.

2.2 Code reading helps isolate style and logic errors.

The most common errors found in code reading
with Ada were style errors. The style errors involved
adding or deleting comments, format changes, and
changes 1o debug code (oot left ia the final product).
Other types of errors found =are initialization errors, and
problerns with incompatibilities between design and
code. This can be due to cither 8 design error or & cod-
ing error. .

Because the Ada compiler exposes many errors not
exposable by a FORTRAN compiler, code readiog Ada
bas a different favor than code reading FORTRAN.
For example, the Ada compiler exposes such errors as
(1) wroog data types, (2) call sequencing errors, (3) vari-
able errors-- cither the variable is declared and never
used, or it is used witbout being declared. So, one
seasoned FORTRAN developer workiog on the Ada pro-
ject noted that code reading is more interesting in FOR-
TRAN, since there were more interesting errors found in
code reading FORTRAN, oot found in reading Ada
code. lo general, logic errors are bard to find in this
application domain, but epough logic errors are found 1o
make code reading worthwhile.

. Some of the difficulty of code reading with Ada oo

this project was due o the beavy pesting and the
number of *call-through™ units. Code reading would
bave bees helped by a flatter implementation. Tbhe
SEPARATE facility makes it necessary to look ia many
places at once o follow the code. However, code read-
ing in Ada was easier than in FORTRAN because the
code was more English-like, and bence, more readable.
Often the reused FORTRAN code is an older variety
without the structurcd constructs available in later ver-
sions.

Code reading tended to miss errors that spanned
multiple units. This would be cxpected with any imple-
mentation language as-well. Ooe example was a prob-
lem where records were skipped when they were being
output. The debugger actually found the problem.

Despite the implementation language, code reading
appears W be important for highly algorithmic routines.

Groups of routines that are used oaly to call others may
be checked o miake sure the design's purity is main-
tained.

3. Unit Testing

9.1 Unit testing was found to be harder uwith Ada than
unth FORTRAN.

The FORTRAN units sre slready relatively iso-
lated; this makes unit testiog essy. Ounly the global
COMMONSs geed to be added o do the unit tests. Oa
the other hand, the Ada units require s lot of “with'd
in” code, and are much more interdependent. Another
very different Ada project had perhaps even more inter-
dependence between its modules than the Ads project
did. That team also found the interdependence made
unit testing very difficult. More interdependence exists
between Ada umits because there sre more relstions o
express in Ada. There are textual inclusion (mestiog),
with-ing in (library units), and igvocation. FORTRAN
only has invocation.

8.2 The introduction of Ada as the (mplementation
language changed the unif lesling methods dramatically.

Unit testing with Ada was dope very differently.
Since one unit depends on many others, it is usually
bard to test a unit in isolation, so this was generally not
done.: The Ada pieces were integrated up to the pack-
age level, and then unit testing was done. Then testing
was done with groups of units that logically fit together,
rather than sctual upit testing. The integrated units
are tested, choosing only 2 subset of possible paths at a
time. The debugger is used to look st & specific unit,
since the test drivers cannot "see” the mested ones.
With Ada projects a debugger becomes essential. This
is in coptrast to the usual development in FORTRAN
where no integration occurs at all until after unit test-
ing.

This shows that the biggest difference between the
way FORTRAN and Ada projects are dope at this point
in development is incrementa! integration. This actu-
ally represents a change in the development lifecycle of

an Ada product; iotegration and unit testing are alter-”

nately done rather than finishing unit testing before
integration.

8.3 The library unitfnesting level issue directly affects
the difficully of unit testing.

The greater the pesting level, the more difficult
unit testing is, since the lower level units in the subsys-
tem are not ia the scope of the test driver. This is the
primary reason & debugger becomes a required testing
aid with Ada projects. For this reason, more library
units and less pesting would bave made testing easier.
Library uagits bave o go dowa W a level io the design
that makes lesting more feasible. With the Ada project
that would have meant taking library units down w0 e
lower lcvel in the design, if the project were o be doane
over.

5207

Two other ways to deal with the pesting during
unit test were tried and were nol very successful. One
solution pulls an inner package out, and includes the
types and "with'd in” modules the outer package used
in order to execute the inner ope. This is difficult w do
for each unit. The other solution is to modify the
specifications of the outer package so that oested pack-
ages ¢an be "seen™ by the test driver. This solution
requires fots of recompilation. With more library units,
there would be less recompilation, because there would
be fewer changes of specifications. Again however, the
best way o tesl was Lo use the debugger on unaltered
code.

8.{ The (mportance of unil lcsling scems to be morc
rclated to application arca than to smplementation
language.

Whether the implementation is in FORTRAN or
Ada, does pot seem ss important as whether the appli-
cation has lots of calculations or has lots of data mani-
pulations. Unit testing seemed more valuable with
scientific applications; perhaps because calculation errors
show up when only a small amount of localized code is
executed. But data manipulation errors require more of
the system to be operating before it is koowa if errors
are present.

4. Use of Ada’s Special Features

{.1 Scparation of spccificalions and bodics 1s quile
benefictal and casy to implement.

The team entered the specifications first, whenever
possible, before the rest of the code. This gave a bigh
fevel view of the system early in the development.
Another benefit is that this belped clarify the interfaces
early. Separating the specifications and bodies also
reduces the amount of recompilaticn required whea
changes are made.

4.2 Generics were fairly casy to implement and they
reduce the amount of code required.

The ooly problems encountered were with correct
compilation of the generics in some cases, due Lo com-
piler bugs in ao early version of the compiler, rather
thano incorrect code. As Ada matures, this will oot be s
problem at all.

4.8 Using too many (ypes increases coding difficulty

The strong typing was very diflicult o get used o,
whep one is sccustomed Lo weakly (yped languages such
ss FORTRAN. [t was casy w create 100 many bew
Lypes a5 well.

Often 2 brand new type was created with a strict
range appropriate for one portion of the application.
Then in otber arcas where subtypes could have been
used, the range on the original (vpe was found to be WO
restrictive, so another brand new type was created
instcad o handle the new situastion. Then a whole pew

4-28

~ M /™ M ™™ /™

—~ e e

| S

—J L

| p—] | W] —- —J

[ae—]

sct of operations had o be created a3 well for the sddi-
tioaal new type. Next time the tesm would recommend
cresting 8 more geoeral pew type, snd using many
different subtypes of the original type, rather than
creating more few Lypes. In this way operations can be
reused and there are far fewer main types to keep track
of. Designers peed to spend time developing families of
types that inherit properties from oue another.

The strong lyping presested some problems when
testing units, though it prevents some kinds of errors,
also. It was harder to write test drivers that could deal
with all the types in the upits being tested. It was also
harder to do the 1/O, since so many types had to be
dealt with.

.4 Tasking was difficult Lo code and fcst, however, this
scems duc Lo concurrency in general and not Ada
apecifically.

Tasks were used in the user interface part of the
project. The user was given many options which made
the interactions between the tasks of the subsystem
very difficult to plan and execute correctly.

It was harder to code tasks {rom the design thap it
was Lo code other types of units. However, this is ot
really due to Ada, but rather it is the nature of con-
currency problems. The language made the use of task-
ing essier, and encouraged the developers o use tasking
more than they would have otherwise. The dynamic
relationships of concurrency cannot be represented in
the design (termination, rendezvous, multiple threads of
control). Correctness was very difficult to assure, as is
usual with these kinds of problems, and deadlock was
Jhard to avoid. Functional testing was done, which is
the usual type in this enviroament.

The major problem the developers bad was with
exceptions. These are no worse with tasking thag they
are with any other program unit, however.

4-5 Exception bandlers have Lo be coded carefully.

The key problem with exceptions is deciding the
best way o bandle them. Errors and the sources of
ercors can be hard to fird if the exception handlers are
not coded carefully. Suppose a particular procedure will
<all another unit, expecting some function to be per-
formed, and certain kinds of data to be returned. If an
.e!ception is raised and handled in the called unit, aad it
t3 noo-specific for the problem raising the exception
(C_-S-' “when others™) , the caller gets control back
without the required function being performed. But the
exceplion was bandled end data was returned, so the
call looks successful. Yet as soop as the caller tried to
use the data from the routine where the exception was
reised and bandled, it fails. Because of propagation, it
caa be very difiicult Lo trace back the error to the origi-
oal source of the problec:.

5207

Several members of the team would recommend
incorporating the way exceptions zre Lo be handled into
the design, rather than leaving this uaotil implements-
tion. Put into the design (1) what exception would be
raised, (2) where it will be bandled, snd (3) what should
happen.

Ada Features*

implementation

esse benefit

tasking - +
generics + ++
strong typing 0 a
exception

bandling a +
pesting + -
separate

specs/bodies ++ ++

¢ This figure represents & subjective assessment
based on team member interviews

Summary

We have learned several important things about
four major areas in implementation. There are macy
advantages to using library units, though gnesting can
bave its usefulness at some point below the subsystem
level. Code reading helps truin people in Ada, and helps
to isolate style and logic errors. Unit testing was sub-
stantially changed by using Ada: the first stages of
integration often began before unit testing proceeded.
Some Ada features are quite powerful and should be
cerefully used.

It is important o remember that these results are
derived from one specific environment. We must be
very careful when extrapolating to other environments.
There are also many questions still left to be answered.
Studies of this project will coatinue, and other Ada pro-
jects are being started. These will help us evaluate the
eflects on longer term issues such as reuse and maiotai-
pability of the Ada projects. We believe this project is
& good beginning Lo a better understaoding of Ada use
in production environmeants.

Acknowledgements

The Ada experiment is msanaged by Frank
McGerry of NASA/GSFC. Tbe autbors would like w0
thank him and the Ada team for their cooperation aand
assistance.

Recfcrences

[Agresti 89]
Agresti W, “Ada Experiment: Lessons Learned
(Training/Requirements Anelysis Phase)”, Goddard
Space Fhight Ceater, Greenbelt, MD 20771, August
196S5.

[Godfrey, Brophy 87]
SEL-87-004, ““Assessing the Ads Design Process and
Its Implications: A Case Study", Godfrey S., end
Brophy C., Goddard Space Flight Center, Green-
belt, MD 20771, July 1987.

McGarry, Agresti 68]
“Measuring Ada for Software Developmesnt ia the

Softweare Engineering Laboratory™, Hawaii Interna-
tional Coaference on Systems Science, January,
1088.

McGarry, Nelson 89)
McGarry F., and Nelson R., “An Experiment with
Ada — The GRO Dypamics Simulator Project
Plan," Goddard Space Flight Center, Greenbelt,
MD 20771, April 1085.

{McGarry, Page et al. 83]
SEL-81-205, “Recommended Approach to Software
Development”, McGarry F., Page J., Eslinger S..
Church V., and Merwarth P., Goddard Space
Flight Ceater, Greenbelt, MD 20771, April 1963.

Murphy, Stark 83] -
SEL-65-002, “Ada Training Evaluation aod Recom-
mendations from the Gamma Ray Observatory Ada
Development Team®, Murphy R., aud Stark M.,
Goddard Space Flight Ceanter, Greenbelt, MD
20771, October 198S.

5207

ORIGINAL PAGE 15
OF POOR QUALITY

Biographies

Carolyn E. Brophy is a graduate research assis-
tant st the University of Marvlend, College Park. Her
rescarch interests arc in software cngineering, and she is
working with the NASA Goddard Software Engineering
Laboratory. Ms. Brophy reccived s B.S. “degree (rom
the University of Pittsburgh 1o biology and pbarmacy.
She is 2 member of ACM.

Sara H. Godfrey is with Goddard Space Flight
Center in Greenbelt, Maryland, where she bas been
working with the NASA Goddard Software Engineering
Lsboratory. She received a B.S. degree {rom the
Ugiversity of Maryland io mathematics. (picture miss-

ing)

William W. Agresti is with Computer Sciences
Corporation in Silver Spriog, Maryland. His applied
research and development projects support the Software
Engineering Laboratory at NASA's Goddard Space
Flight Center. His rescarch ioterests are in software
process engioeering, and he recently completed the
tutorial text, New Paradigms for Software Development,
for the [EEE Computer Society. From 1973-83 he held
varioys faculty and admipistrative positions at the
Uaiversity of Michigan-Dearborn. He received the BS.
degree from Case Western Reserve University, the M.S.
20d Ph.D. from New York University.

Victor R. Basili is Professor and Chsirman
of the Computer Science Department at the Univer-
sity of Maryland, College Park, Maryland. He was
involved in the design and development of several
software projects, including the SIMPL family of
programming languages. He is currently measuring
apd evaluating software development in industrial
and government settings aod has consufted with many
sgencies and organizations, including 1BM, GE,
CSC, GTE. MCC, ATLT, Mowrola, HP. NRL,
NSWC, snd NASA.

e~

jon g’

[o]

[Pp— [SR R W Wommsans! namen | =

) [P,

He is one of the founders and principals in the Software Enginecring Labora-
tory, & joint venture between NASA Goddard Space Flight Center, the University of
Marytand end Computer Sciences Corporation, cstablished in 1976. He has bcen
working on the devclopment of quantitative approaches for software management,
engineering and quality assurance by developing modcls and metrics for the
software development process and product.

Dr. DBasili has authored over 00 papers. 1o 1082, he reccived the Out-
standing Paper Award from the [EEE Transactions on Software Engineer-
ing for his paper on the evaluation of methodologies.

He was Program Chairmaa for several conferences including tbe 6th Interna-
tional Conference on Software Engineering. He serves on the editorial boards of
the Journal of Systems and Software and the [EEE Transactions on Software
Engincering and is currently Editor-in-Chief of TSE. He is 8 member of the Board
of Governors of the [EEE Computer Society.

5207

